Sistema de Consulta Abierta
Sistema de consulta abierta con módulo de análisis semántico
 Todo Clases Namespaces Funciones Variables Páginas
Métodos públicos | Métodos públicos estáticos | Lista de todos los miembros
Referencia de la Clase org.knowceans.gibbstest.LdaGibbsSampler
Diagrama de colaboración para org.knowceans.gibbstest.LdaGibbsSampler:
Collaboration graph
[significado de colores y flechas]

Métodos públicos

 LdaGibbsSampler (int[][] documents, int V)
 
void initialState (int K)
 
void gibbs (int K, double alpha, double beta)
 
double[][] getTheta ()
 
double[][] getPhi ()
 
int[][] getZ ()
 
int[][] getDocuments ()
 
int getV ()
 
int getK ()
 
void configure (int iterations, int burnIn, int thinInterval, int sampleLag)
 

Métodos públicos estáticos

static void hist (double[] data, int fmax)
 
static void main (String[] args)
 
static String shadeDouble (double d, double max)
 

Descripción detallada

Gibbs sampler for estimating the best assignments of topics for words and documents in a corpus. The algorithm is introduced in Tom Griffiths' paper "Gibbs sampling in the generative model of Latent Dirichlet Allocation" (2002).

Autor
heinrich

Documentación del constructor y destructor

org.knowceans.gibbstest.LdaGibbsSampler.LdaGibbsSampler ( int  documents[][],
int  V 
)
inline

Initialise the Gibbs sampler with data.

Parámetros
Vvocabulary size
data

Documentación de las funciones miembro

void org.knowceans.gibbstest.LdaGibbsSampler.configure ( int  iterations,
int  burnIn,
int  thinInterval,
int  sampleLag 
)
inline

Configure the gibbs sampler

Parámetros
iterationsnumber of total iterations
burnInnumber of burn-in iterations
thinIntervalupdate statistics interval
sampleLagsample interval (-1 for just one sample at the end)
double [][] org.knowceans.gibbstest.LdaGibbsSampler.getPhi ( )
inline

Retrieve estimated topic–word associations. If sample lag > 0 then the mean value of all sampled statistics for phi[][] is taken.

Devuelve
phi multinomial mixture of topic words (K x V)
double [][] org.knowceans.gibbstest.LdaGibbsSampler.getTheta ( )
inline

Retrieve estimated document–topic associations. If sample lag > 0 then the mean value of all sampled statistics for theta[][] is taken.

Devuelve
theta multinomial mixture of document topics (M x K)
int [][] org.knowceans.gibbstest.LdaGibbsSampler.getZ ( )
inline

Added in by Doori Lee

void org.knowceans.gibbstest.LdaGibbsSampler.gibbs ( int  K,
double  alpha,
double  beta 
)
inline

Main method: Select initial state ? Repeat a large number of times: 1. Select an element 2. Update conditional on other elements. If appropriate, output summary for each run.

Parámetros
Knumber of topics
alphasymmetric prior parameter on document–topic associations
betasymmetric prior parameter on topic–term associations
static void org.knowceans.gibbstest.LdaGibbsSampler.hist ( double[]  data,
int  fmax 
)
inlinestatic

Print table of multinomial data

Parámetros
datavector of evidence
fmaxmax frequency in display
Devuelve
the scaled histogram bin values
void org.knowceans.gibbstest.LdaGibbsSampler.initialState ( int  K)
inline

Initialisation: Must start with an assignment of observations to topics ? Many alternatives are possible, I chose to perform random assignments with equal probabilities

Parámetros
Knumber of topics
Devuelve
z assignment of topics to words
static void org.knowceans.gibbstest.LdaGibbsSampler.main ( String[]  args)
inlinestatic

Driver with example data.

Parámetros
args
static String org.knowceans.gibbstest.LdaGibbsSampler.shadeDouble ( double  d,
double  max 
)
inlinestatic

create a string representation whose gray value appears as an indicator of magnitude, cf. Hinton diagrams in statistics.

Parámetros
dvalue
maxmaximum value
Devuelve

La documentación para esta clase fue generada a partir del siguiente fichero: