def vsm.extensions.clustering.manifold.Manifold.AffinityPropagation |
( |
|
self, |
|
|
|
show = True |
|
) |
| |
Clusters objects in `dismat` using affinity propagation algorithm.
:param show: Shows the resulting clusters if true.
:type n_clusters: boolean, optional
def vsm.extensions.clustering.manifold.Manifold.cls |
( |
|
self | ) |
|
def vsm.extensions.clustering.manifold.Manifold.isomap |
( |
|
self, |
|
|
|
n_components = 2 , |
|
|
|
n_neighbors = 3 , |
|
|
|
show = False |
|
) |
| |
Calculates lower dimention coordinates using the isomap algorithm.
:param n_components: dimentionality of the reduced space
:type n_components: int, optional
:param n_neighbors: Used by isomap to determine the number of neighbors
for each point. Large neighbor size tends to produce a denser map.
:type n_neighbors: int, optional
:param show: Shows the calculated coordinates if true.
:type show: boolean, optional
def vsm.extensions.clustering.manifold.Manifold.KMeans |
( |
|
self, |
|
|
|
n_clusters = 10 , |
|
|
|
init = 'k-means++' , |
|
|
|
max_iter = 100 , |
|
|
|
n_init = 1 , |
|
|
|
verbose = 1 , |
|
|
|
show = True |
|
) |
| |
Clusters the objects in `dismat` using k-means algorithm. This requires
`pos` be precomputed by `mds` or `isomap`. For parameters of the
algorithms see:
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.
html#sklearn.cluster.KMeans
:param n_clusters: Number of clusters used as the parameter for K-means.
:type n_clusters: int, optional
:param show: Shows the resulting clusters if true.
:type n_clusters: boolean, optional
def vsm.extensions.clustering.manifold.Manifold.mds |
( |
|
self, |
|
|
|
n_components = 2 , |
|
|
|
dissimilarity = 'precomputed' , |
|
|
|
show = False |
|
) |
| |
Calculates lower dimention coordinates using the mds algorithm.
This requires sklearn ver 0.14 due to the dissimilarity argument.
:param n_components: dimentionality of the reduced space.
:type n_components: int, optional
:param show: Shows the calculated coordinates if true.
:type show: boolean, optional
def vsm.extensions.clustering.manifold.Manifold.plot |
( |
|
self, |
|
|
|
xy = (0,1 |
|
) |
| |
Outputs 2d embeded plot based on `pos`
:param xy: specifies the dimsntions of pos to be plotted.
:type xy: tuple, optional
def vsm.extensions.clustering.manifold.Manifold.SpectralClustering |
( |
|
self, |
|
|
|
n_clusters = 10 , |
|
|
|
show = True |
|
) |
| |
Clusters objects in `dismat` using spectral clustering.
:param n_clusters: Number of clusters used as the parameter for K-means.
:type n_clusters: int, optional
:param show: Shows the resulting clusters if true.
:type n_clusters: boolean, optional
La documentación para esta clase fue generada a partir del siguiente fichero:
- vsm/vsm/extensions/clustering/manifold.py