Sistema de Consulta Abierta
Sistema de consulta abierta con módulo de análisis semántico
 Todo Clases Namespaces Funciones Variables Páginas
Métodos públicos | Atributos públicos | Lista de todos los miembros
Referencia de la Clase vsm.extensions.clustering.manifold.Manifold
Diagrama de herencias de vsm.extensions.clustering.manifold.Manifold
Inheritance graph
[significado de colores y flechas]
Diagrama de colaboración para vsm.extensions.clustering.manifold.Manifold:
Collaboration graph
[significado de colores y flechas]

Métodos públicos

def __init__
 
def __str__
 
def cls
 
def KMeans
 
def AffinityPropagation
 
def SpectralClustering
 
def mds
 
def isomap
 
def plot
 

Atributos públicos

 dismat
 
 labels
 
 pos
 

Documentación de las funciones miembro

def vsm.extensions.clustering.manifold.Manifold.AffinityPropagation (   self,
  show = True 
)
Clusters objects in `dismat` using affinity propagation algorithm.

:param show: Shows the resulting clusters if true.
:type n_clusters: boolean, optional
def vsm.extensions.clustering.manifold.Manifold.cls (   self)
views clusters as lists
def vsm.extensions.clustering.manifold.Manifold.isomap (   self,
  n_components = 2,
  n_neighbors = 3,
  show = False 
)
Calculates lower dimention coordinates using the isomap algorithm.

:param n_components: dimentionality of the reduced space
:type n_components: int, optional

:param n_neighbors: Used by isomap to determine the number of neighbors
    for each point. Large neighbor size tends to produce a denser map.
:type n_neighbors: int, optional

:param show: Shows the calculated coordinates if true.
:type show: boolean, optional
def vsm.extensions.clustering.manifold.Manifold.KMeans (   self,
  n_clusters = 10,
  init = 'k-means++',
  max_iter = 100,
  n_init = 1,
  verbose = 1,
  show = True 
)
Clusters the objects in `dismat` using k-means algorithm. This requires 
`pos` be  precomputed by `mds` or `isomap`. For parameters of the 
algorithms see: 
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.
html#sklearn.cluster.KMeans

:param n_clusters: Number of clusters used as the parameter for K-means.
:type n_clusters: int, optional

:param show: Shows the resulting clusters if true.
:type n_clusters: boolean, optional
def vsm.extensions.clustering.manifold.Manifold.mds (   self,
  n_components = 2,
  dissimilarity = 'precomputed',
  show = False 
)
Calculates lower dimention coordinates using the mds algorithm.
This requires sklearn ver 0.14 due to the dissimilarity argument.

:param n_components: dimentionality of the reduced space.
:type n_components: int, optional

:param show: Shows the calculated coordinates if true.
:type show: boolean, optional
def vsm.extensions.clustering.manifold.Manifold.plot (   self,
  xy = (0,1 
)
Outputs 2d embeded plot based on `pos`

:param xy: specifies the dimsntions of pos to be plotted.
:type xy: tuple, optional
def vsm.extensions.clustering.manifold.Manifold.SpectralClustering (   self,
  n_clusters = 10,
  show = True 
)
Clusters objects in `dismat` using spectral clustering. 

:param n_clusters: Number of clusters used as the parameter for K-means.
:type n_clusters: int, optional

:param show: Shows the resulting clusters if true.
:type n_clusters: boolean, optional

La documentación para esta clase fue generada a partir del siguiente fichero: