|
| context_type |
|
| K |
|
| V |
|
| indices |
|
| corpus |
|
| alpha |
|
| Z |
|
| word_top |
|
| top_doc |
|
| log_probs |
|
| iteration |
|
def vsm.model.ldacgs.LdaCgs.__init__ |
( |
|
self, |
|
|
|
corpus = None , |
|
|
|
context_type = None , |
|
|
|
K = 20 , |
|
|
|
V = 0 , |
|
|
|
alpha = [] , |
|
|
|
beta = [] |
|
) |
| |
Initialize LdaCgs.
:param corpus: Source of observed data.
:type corpus: `Corpus`
:param context_type: Name of tokenization stored in `corpus` whose tokens
will be treated as documents.
:type context_type: string, optional
:param K: Number of topics. Default is `20`.
:type K: int, optional
:param beta: Topic priors. Default is 0.01 for all words.
:type beta: list, optional
:param alpha: Document priors. Default is a flat prior of 0.01
for all topics.
:type alpha: list, optional
La documentación para esta clase fue generada a partir del siguiente fichero: