![]() |
Sistema de Consulta Abierta
Sistema de consulta abierta con módulo de análisis semántico
|
Métodos públicos | |
def | __init__ |
def | word_top |
def | word_top |
def | inv_top_sums |
def | inv_top_sums |
def | top_doc |
def | top_doc |
def | corpus |
def | corpus |
def | Z |
def | Z |
def | K |
def | K |
def | V |
def | V |
def | iteration |
def | iteration |
def | train |
![]() | |
def | __init__ |
def | Z_split |
def | docs |
def | train |
def | save |
Métodos públicos estáticos | |
def | load |
![]() | |
def | load |
Atributos públicos | |
V | |
corpus | |
Z | |
word_top | |
inv_top_sums | |
top_doc | |
iteration | |
![]() | |
context_type | |
K | |
V | |
indices | |
corpus | |
Z | |
alpha | |
word_top | |
inv_top_sums | |
top_doc | |
iteration | |
log_probs | |
seed | |
Atributos públicos estáticos | |
tuple | maxint = np.iinfo(np.int32) |
list | seeds = [np.random.randint(0, maxint) for n in range(n_proc)] |
K = beta) | |
tuple | pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=n_iterations) |
int | iteration = 0 |
tuple | data = zip(docs, doc_indices, self._mtrand_states) |
tuple | results = p.map(update, data) |
tuple | lp = np.sum(logp_ls) |
An implementation of LDA using collapsed Gibbs sampling with multi-processing. On Windows platforms, LdaCgsMulti is not supported. A NotImplementedError will be raised notifying the user to use the LdaCgsSeq package. Users desiring a platform-independent fallback should use LDA(multiprocess=True) to initialize the object, which will return either a LdaCgsMulti or a LdaCgsSeq instance, depending on the platform, while raising a RuntimeWarning.
def vsm.model.ldacgsmulti.LdaCgsMulti.__init__ | ( | self, | |
corpus = None , |
|||
context_type = None , |
|||
K = 20 , |
|||
V = 0 , |
|||
Z = [] , |
|||
alpha = [] , |
|||
beta = [] , |
|||
n_proc = 2 , |
|||
seeds = None |
|||
) |
Initialize LdaCgsMulti. :param corpus: Source of observed data. :type corpus: `Corpus` :param context_type: Name of tokenization stored in `corpus` whose tokens will be treated as documents. :type context_type: string, optional :param K: Number of topics. Default is `20`. :type K: int, optional :param alpha: Context priors. Default is a flat prior of 0.01 for all contexts. :type alpha: list, optional :param beta: Topic priors. Default is 0.01 for all topics. :type beta: list, optional :param n_proc: Number of processors used for training. Default is 2. :type n_proc: int, optional :param seeds: List of random seeds, one for each thread. The length of the list should be same as `n_proc`. Default is `None`. :type seeds: list of integers, optional
|
static |
A static method for loading a saved LdaCgsMulti model. :param filename: Name of a saved model to be loaded. :type filename: string :returns: m : LdaCgsMulti object :See Also: :class:`numpy.load`
def vsm.model.ldacgsmulti.LdaCgsMulti.train | ( | self, | |
n_iterations = 500 , |
|||
verbose = 1 |
|||
) |
Takes an optional argument, `n_iterations` and updates the model `n_iterations` times. :param n_iterations: Number of iterations. Default is 500. :type n_iterations: int, optional :param verbose: If `True`, current number of iterations are printed out to notify the user. Default is `True`. :type verbose: boolean, optional
|
static |
LdaCgsMulti is not implemented on Windows. Please use LdaCgsSeq.