Sistema de Consulta Abierta
Sistema de consulta abierta con módulo de análisis semántico
 Todo Clases Namespaces Funciones Variables Páginas
Métodos públicos | Métodos públicos estáticos | Atributos públicos | Atributos públicos estáticos | Lista de todos los miembros
Referencia de la Clase vsm.model.ldacgsmulti.LdaCgsMulti
Diagrama de herencias de vsm.model.ldacgsmulti.LdaCgsMulti
Inheritance graph
[significado de colores y flechas]
Diagrama de colaboración para vsm.model.ldacgsmulti.LdaCgsMulti:
Collaboration graph
[significado de colores y flechas]

Métodos públicos

def __init__
 
def word_top
 
def word_top
 
def inv_top_sums
 
def inv_top_sums
 
def top_doc
 
def top_doc
 
def corpus
 
def corpus
 
def Z
 
def Z
 
def K
 
def K
 
def V
 
def V
 
def iteration
 
def iteration
 
def train
 
- Métodos públicos heredados desde vsm.model.ldacgsseq.LdaCgsSeq
def __init__
 
def Z_split
 
def docs
 
def train
 
def save
 

Métodos públicos estáticos

def load
 
- Métodos públicos estáticos heredados desde vsm.model.ldacgsseq.LdaCgsSeq
def load
 

Atributos públicos

 V
 
 corpus
 
 Z
 
 word_top
 
 inv_top_sums
 
 top_doc
 
 iteration
 
- Atributos públicos heredados desde vsm.model.ldacgsseq.LdaCgsSeq
 context_type
 
 K
 
 V
 
 indices
 
 corpus
 
 Z
 
 alpha
 
 word_top
 
 inv_top_sums
 
 top_doc
 
 iteration
 
 log_probs
 
 seed
 

Atributos públicos estáticos

tuple maxint = np.iinfo(np.int32)
 
list seeds = [np.random.randint(0, maxint) for n in range(n_proc)]
 
 K = beta)
 
tuple pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=n_iterations)
 
int iteration = 0
 
tuple data = zip(docs, doc_indices, self._mtrand_states)
 
tuple results = p.map(update, data)
 
tuple lp = np.sum(logp_ls)
 

Descripción detallada

An implementation of LDA using collapsed Gibbs sampling with multi-processing.

On Windows platforms, LdaCgsMulti is not supported. A NotImplementedError 
will be raised notifying the user to use the LdaCgsSeq package. Users
desiring a platform-independent fallback should use LDA(multiprocess=True) to
initialize the object, which will return either a LdaCgsMulti or a LdaCgsSeq
instance, depending on the platform, while raising a RuntimeWarning.

Documentación del constructor y destructor

def vsm.model.ldacgsmulti.LdaCgsMulti.__init__ (   self,
  corpus = None,
  context_type = None,
  K = 20,
  V = 0,
  Z = [],
  alpha = [],
  beta = [],
  n_proc = 2,
  seeds = None 
)
Initialize LdaCgsMulti.

:param corpus: Source of observed data.
:type corpus: `Corpus`
    
:param context_type: Name of tokenization stored in `corpus` whose tokens
    will be treated as documents.
:type context_type: string, optional

:param K: Number of topics. Default is `20`.
:type K: int, optional
    
:param alpha: Context priors. Default is a flat prior of 0.01 
    for all contexts.
:type alpha: list, optional
    
:param beta: Topic priors. Default is 0.01 for all topics.
:type beta: list, optional

:param n_proc: Number of processors used for training. Default is
    2.
:type n_proc: int, optional

:param seeds: List of random seeds, one for each thread.
    The length of the list should be same as `n_proc`. Default is `None`.
:type seeds: list of integers, optional

Documentación de las funciones miembro

def vsm.model.ldacgsmulti.LdaCgsMulti.load (   filename)
static
A static method for loading a saved LdaCgsMulti model.

:param filename: Name of a saved model to be loaded.
:type filename: string

:returns: m : LdaCgsMulti object

:See Also: :class:`numpy.load`
def vsm.model.ldacgsmulti.LdaCgsMulti.train (   self,
  n_iterations = 500,
  verbose = 1 
)
Takes an optional argument, `n_iterations` and updates the model
`n_iterations` times.

:param n_iterations: Number of iterations. Default is 500.
:type n_iterations: int, optional

:param verbose: If `True`, current number of iterations
    are printed out to notify the user. Default is `True`.
:type verbose: boolean, optional

Documentación de los datos miembro

tuple vsm.model.ldacgsmulti.LdaCgsMulti.maxint = np.iinfo(np.int32)
static
LdaCgsMulti is not implemented on 
Windows. Please use LdaCgsSeq.

La documentación para esta clase fue generada a partir del siguiente fichero: