![]() |
Sistema de Consulta Abierta
Sistema de consulta abierta con módulo de análisis semántico
|
Métodos públicos | |
def | __init__ |
def | train |
![]() | |
def | __init__ |
def | save |
Atributos públicos | |
context_type | |
corpus | |
docs | |
V | |
matrix | |
![]() | |
matrix | |
context_type | |
Otros miembros heredados | |
![]() | |
def | load |
Trains a term-frequency model. In a term-frequency model, the number of occurrences of a word type in a context is counted for all word types and documents. Word types correspond to matrix rows and documents correspond to matrix columns. :See Also: :class:`vsm.model.base`, :class:`vsm.corpus.Corpus`, :class:`scipy.sparse.coo_matrix`
def vsm.model.tf.TfSeq.__init__ | ( | self, | |
corpus = None , |
|||
context_type = None |
|||
) |
Initialize TfSeq. :param corpus: A Corpus object containing the training data. :type corpus: Corpus :param context_type: A string specifying the type of context over which the model trainer is applied. :type context_type: string
def vsm.model.tf.TfSeq.train | ( | self | ) |
Counts word-type occurrences per context and stores the results in `self.matrix`.