![]() |
Sistema de Consulta Abierta
Sistema de consulta abierta con módulo de análisis semántico
|
Métodos públicos | |
def | __init__ |
def | corpus |
def | corpus |
def | V |
def | V |
def | train |
![]() | |
def | __init__ |
def | train |
![]() | |
def | __init__ |
def | save |
Atributos públicos | |
V | |
corpus | |
matrix | |
![]() | |
context_type | |
corpus | |
docs | |
V | |
matrix | |
![]() | |
matrix | |
context_type | |
Otros miembros heredados | |
![]() | |
def | load |
Trains a term-frequency model. In a term-frequency model, the number of occurrences of a word type in a context is counted for all word types and documents. Word types correspond to matrix rows and documents correspond to matrix columns. The data structure is a sparse integer matrix. :See Also: :class:`vsm.model.base.BaseModel`, :class:`vsm.corpus.Corpus`, :class:`scipy.sparse.coo_matrix`
def vsm.model.tf.TfMulti.__init__ | ( | self, | |
corpus = None , |
|||
context_type = None |
|||
) |
Initialize TfMulti. :param corpus: A Corpus object containing the training data :type corpus: Corpus, optional :param context_type: A string specifying the type of context over which the model trainer is applied. :type context_type: string, optional
def vsm.model.tf.TfMulti.train | ( | self, | |
n_proc = 2 |
|||
) |
Takes a number of processes `n_proc` over which to map and reduce. :param n_procs: Number of processors. :type n_procs: int